Root Numbers of Abelian Varieties

Matthew Bisatt
King's College London

ICTP Curves and L-functions, 5th September 2017

Motivation

Let A / K be an abelian variety over a number field. Then there is a (conjectural) completed L-function $\Lambda(A / K, s)$

Motivation

Let A / K be an abelian variety over a number field. Then there is a (conjectural) completed L-function $\Lambda(A / K, s)$ with functional equation

$$
\Lambda(A / K, s)= \pm \Lambda(A / K, 2-s) .
$$

The global root number $W(A / K)= \pm 1$ is the expected sign of the functional equation; it is defined independently of the existence of the L-function.

Motivation

Let A / K be an abelian variety over a number field. Then there is a (conjectural) completed L-function $\Lambda(A / K, s)$ with functional equation

$$
\Lambda(A / K, s)= \pm \Lambda(A / K, 2-s)
$$

The global root number $W(A / K)= \pm 1$ is the expected sign of the functional equation; it is defined independently of the existence of the L-function.

Parity Conjecture

$$
W(A / K)=(-1)^{\mathrm{rank}_{\mathbb{Z}} A(K)}
$$

Motivation

Let A / K be an abelian variety over a number field. Then there is a (conjectural) completed L-function $\Lambda(A / K, s)$ with functional equation

$$
\Lambda(A / K, s)= \pm \Lambda(A / K, 2-s)
$$

The global root number $W(A / K)= \pm 1$ is the expected sign of the functional equation; it is defined independently of the existence of the L-function.

Parity Conjecture

$$
W(A / K)=(-1)^{\mathrm{rank}_{\mathbb{Z}} A(K)}
$$

Corollary

If $W(A / K)=-1$, then $|A(K)|$ is infinite.

How do we compute The global root number?

$$
W(A / K):=\prod_{v \in M_{K}} W\left(A / K_{v}\right)
$$

How do we compute the global root number?

$$
W(A / K):=\prod_{v \in M_{K}} W\left(A / K_{v}\right)
$$

Lemma

- $W\left(A / K_{v}\right)=1$ if A has good reduction at finite v;

How do we compute the global root number?

$$
W(A / K):=\prod_{v \in M_{K}} W\left(A / K_{v}\right)
$$

LEMMA

- $W\left(A / K_{v}\right)=1$ if A has good reduction at finite v;
- $W\left(A / K_{v}\right)=(-1)^{\operatorname{dim} A}$ if $v \mid \infty$.

Elliptic curves: Potentially Multiplicative

Let E / \mathbb{Q}_{p} be an elliptic curve with potentially multiplicative reduction $\left(j(E) \notin \mathbb{Z}_{p}\right)$

Elliptic curves: Potentially Multiplicative

Let E / \mathbb{Q}_{p} be an elliptic curve with potentially multiplicative reduction $\left(j(E) \notin \mathbb{Z}_{p}\right)$, then $\rho_{E}^{*} \cong \chi \otimes \operatorname{sp}(2)$

Elliptic curves: Potentially Multiplicative

Let E / \mathbb{Q}_{p} be an elliptic curve with potentially multiplicative reduction $\left(j(E) \notin \mathbb{Z}_{p}\right)$, then $\rho_{E}^{*} \cong \chi \otimes \operatorname{sp}(2)$ and

$$
W\left(E / \mathbb{Q}_{p}\right)= \begin{cases}-1 & \text { if } \chi=\mathbb{1} \text { (split); } \\ 1 & \text { if } \chi=\eta \text { is unramified quadratic (nonsplit) }\end{cases}
$$

Elliptic curves: Potentially Multiplicative

Let E / \mathbb{Q}_{p} be an elliptic curve with potentially multiplicative reduction $\left(j(E) \notin \mathbb{Z}_{p}\right)$, then $\rho_{E}^{*} \cong \chi \otimes \operatorname{sp}(2)$ and

$$
W\left(E / \mathbb{Q}_{p}\right)= \begin{cases}-1 & \text { if } \chi=\mathbb{1} \text { (split) } \\ 1 & \text { if } \chi=\eta \text { is unramified quad } \\ \left(\frac{-1}{p}\right) & \text { if } \chi \text { is ramified and } p>2\end{cases}
$$

Elliptic curves: Potentially Multiplicative

Let E / \mathbb{Q}_{p} be an elliptic curve with potentially multiplicative reduction $\left(j(E) \notin \mathbb{Z}_{p}\right)$, then $\rho_{E}^{*} \cong \chi \otimes \operatorname{sp}(2)$ and

$$
W\left(E / \mathbb{Q}_{p}\right)= \begin{cases}-1 & \text { if } \chi=\mathbb{1} \text { (split) } \\ 1 & \text { if } \chi=\eta \text { is unramified quadratic (nonsplit) } \\ \left(\frac{-1}{p}\right) & \text { if } \chi \text { is ramified and } p>2\end{cases}
$$

Example

Let $E / \mathbb{Q}: y^{2}+y=x^{3}-x, N=37, j=\frac{110592}{37}$. Then

$$
W(E / \mathbb{Q})
$$

Elliptic curves: Potentially Multiplicative

Let E / \mathbb{Q}_{p} be an elliptic curve with potentially multiplicative reduction $\left(j(E) \notin \mathbb{Z}_{p}\right)$, then $\rho_{E}^{*} \cong \chi \otimes \operatorname{sp}(2)$ and

$$
W\left(E / \mathbb{Q}_{p}\right)= \begin{cases}-1 & \text { if } \chi=\mathbb{1} \text { (split) } \\ 1 & \text { if } \chi=\eta \text { is unramified quadratic (nonsplit) } \\ \left(\frac{-1}{p}\right) & \text { if } \chi \text { is ramified and } p>2\end{cases}
$$

Example

Let $E / \mathbb{Q}: y^{2}+y=x^{3}-x, N=37, j=\frac{110592}{37}$. Then

$$
W(E / \mathbb{Q})=-1 \times
$$

Elliptic curves: Potentially Multiplicative

Let E / \mathbb{Q}_{p} be an elliptic curve with potentially multiplicative reduction $\left(j(E) \notin \mathbb{Z}_{p}\right)$, then $\rho_{E}^{*} \cong \chi \otimes \operatorname{sp}(2)$ and

$$
W\left(E / \mathbb{Q}_{p}\right)= \begin{cases}-1 & \text { if } \chi=\mathbb{1}(\text { split) } \\ 1 & \text { if } \chi=\eta \text { is unramified quadratic (nonsplit) } \\ \left(\frac{-1}{p}\right) & \text { if } \chi \text { is ramified and } p>2\end{cases}
$$

Example

Let $E / \mathbb{Q}: y^{2}+y=x^{3}-x, N=37, j=\frac{110592}{37}$. Then

$$
W(E / \mathbb{Q})=-1 \times 1=-1
$$

Elliptic curves: Potentially Multiplicative

Let E / \mathbb{Q}_{p} be an elliptic curve with potentially multiplicative reduction $\left(j(E) \notin \mathbb{Z}_{p}\right)$, then $\rho_{E}^{*} \cong \chi \otimes \operatorname{sp}(2)$ and

$$
W\left(E / \mathbb{Q}_{p}\right)= \begin{cases}-1 & \text { if } \chi=\mathbb{1} \text { (split) } \\ 1 & \text { if } \chi=\eta \text { is unramified quadratic (nonsplit) } \\ \left(\frac{-1}{p}\right) & \text { if } \chi \text { is ramified and } p>2\end{cases}
$$

Example

Let $E / \mathbb{Q}: y^{2}+y=x^{3}-x, N=37, j=\frac{110592}{37}$. Then

$$
W(E / \mathbb{Q})=-1 \times 1=-1
$$

So $E(\mathbb{Q})$ is infinite, assuming the parity conjecture.

Abelian Varieties: Potentially Totally Toric

Proposition
 Let $\rho_{A}^{*} \cong \rho_{T} \otimes \operatorname{sp}(2)$ and assume that $p>2 \operatorname{dim} A+1$.

Abelian Varieties: Potentially Totally Toric

Proposition

Let $\rho_{A}^{*} \cong \rho_{T} \otimes \operatorname{sp}(2)$ and assume that $p>2 \operatorname{dim} A+1$.Then

$$
W\left(A / \mathbb{Q}_{p}\right)=(-1)^{\left\langle\rho_{T}, 1\right\rangle}
$$

Abelian Varieties: Potentially Totally Toric

Proposition

Let $\rho_{A}^{*} \cong \rho_{T} \otimes \operatorname{sp}(2)$ and assume that $p>2 \operatorname{dim} A+1$. Then

$$
W\left(A / \mathbb{Q}_{p}\right)=(-1)^{\left\langle\rho_{T}, \mathbb{1}\right\rangle}\left(\frac{-1}{p}\right)^{m_{T}},
$$

where m_{T} is the multiplicity of -1 as an eigenvalue for $\rho_{T}(\iota)$, with ι any generator of the tame inertia group.

Elliptic Curves: Potentially Good

Proposition

Let $E / \mathbb{Q}_{p}, p>3$, have potentially good reduction $\left(j(E) \in \mathbb{Z}_{p}\right)$.

Elliptic Curves: Potentially Good

Proposition

Let $E / \mathbb{Q}_{p}, p>3$, have potentially good reduction $\left(j(E) \in \mathbb{Z}_{p}\right)$. Set $e=\frac{12}{\operatorname{gcd}\left(v_{p}\left(\Delta_{E}\right), 12\right)}$.

Elliptic Curves: Potentially Good

Proposition

Let $E / \mathbb{Q}_{p}, p>3$, have potentially good reduction $\left(j(E) \in \mathbb{Z}_{p}\right)$. Set $e=\frac{12}{\operatorname{gcd}\left(v_{p}\left(\Delta_{E}\right), 12\right)}$. Then

$$
W\left(E / \mathbb{Q}_{p}\right)=\left\{\begin{array}{cl}
1 & \text { if } e=1(\text { good reduction }) ; \\
\left(\frac{-1}{p}\right) & \text { if } e=2,6 ; \\
\left(\frac{-3}{p}\right) & \text { if } e=3 ; \\
\left(\frac{-2}{p}\right) & \text { if } e=4 .
\end{array}\right.
$$

Abelian Varieties: Potentially Good

For each $e \in \mathbb{N}$, let $\varphi_{B}(e)=\max \left\{2,\left|(\mathbb{Z} / e \mathbb{Z})^{\times}\right|\right\}$

Abelian Varieties: Potentially Good

For each $e \in \mathbb{N}$, let $\varphi_{B}(e)=\max \left\{2,\left|(\mathbb{Z} / e \mathbb{Z})^{\times}\right|\right\}$and set

$$
m_{e}=\frac{\#\left\{\text { eigenvalues of } \rho_{A}^{*}(\iota) \text { of order } e\right\}}{\varphi_{B}(e)}
$$

Abelian Varieties: Potentially Good

For each $e \in \mathbb{N}$, let $\varphi_{B}(e)=\max \left\{2,\left|(\mathbb{Z} / e \mathbb{Z})^{\times}\right|\right\}$and set

$$
m_{e}=\frac{\#\left\{\text { eigenvalues of } \rho_{A}^{*}(\iota) \text { of order } e\right\}}{\varphi_{B}(e)} .
$$

Proposition

Let $p>2 \operatorname{dim} A+1$. Then $W\left(A / \mathbb{Q}_{p}\right)=\prod_{e \in \mathbb{N}} W_{p, e}^{m_{e}}$, where

Abelian Varieties: Potentially Good

For each $e \in \mathbb{N}$, let $\varphi_{B}(e)=\max \left\{2,\left|(\mathbb{Z} / e \mathbb{Z})^{\times}\right|\right\}$and set

$$
m_{e}=\frac{\#\left\{\text { eigenvalues of } \rho_{A}^{*}(\iota) \text { of order } e\right\}}{\varphi_{B}(e)}
$$

PROPOSITION

Let $p>2 \operatorname{dim} A+1$. Then $W\left(A / \mathbb{Q}_{p}\right)=\prod_{e \in \mathbb{N}} W_{p, e}^{m_{e}}$, where

$$
W_{p, e}= \begin{cases}\left(\frac{p}{l}\right) & \text { if } e=l^{k} ; \\ \left(\frac{-1}{p}\right) & \text { if } e=2 l^{k} \text { and } l \equiv 3 \quad \bmod 4, e=2 ; \\ \left(\frac{-2}{p}\right) & \text { if } e=4 ; \\ \left(\frac{2}{p}\right) & \text { if } e=2^{k} \text { for } k \geq 3 ; \\ 1 & \text { else, }\end{cases}
$$

where $k>0$ and l is any odd prime.

Abelian Varieties: The General Case

Abelian Varieties: The General Case

Let \mathcal{K} be a characteristic 0 local field with residue characteristic p. In general $\rho_{A}^{*} \cong \rho_{B}^{*} \oplus\left(\rho_{T} \otimes \operatorname{sp}(2)\right)$, for some abelian variety B / \mathcal{K} with potentially good reduction.

Abelian Varieties: The General Case

Let \mathcal{K} be a characteristic 0 local field with residue characteristic p. In general $\rho_{A}^{*} \cong \rho_{B}^{*} \oplus\left(\rho_{T} \otimes \operatorname{sp}(2)\right)$, for some abelian variety B / \mathcal{K} with potentially good reduction.

Theorem (B.)

Let $p>2 \operatorname{dim} A+1$. Using the notation above:

$$
W(A / \mathcal{K})=(-1)^{\left\langle\rho_{T}, \mathbb{1}\right\rangle} W_{p, 2}^{m_{T} f\left(\mathcal{K} / \mathbb{Q}_{p}\right)}\left(\prod_{e \in \mathbb{N}} W_{p, e}^{m_{e}}\right)^{f\left(\mathcal{K} / \mathbb{Q}_{p}\right)}
$$

Applications

Example

Let $C / \mathbb{Q}: y^{2}=x^{6}-10 x^{4}+2 x^{3}+21 x^{2}-18 x+5, N=103^{2}$.

Applications

Example

Let $C / \mathbb{Q}: y^{2}=x^{6}-10 x^{4}+2 x^{3}+21 x^{2}-18 x+5, N=103^{2}$. Then

$$
W(\operatorname{Jac}(C / \mathbb{Q}))=(-1)^{2} \times
$$

Applications

ExAMPLE

Let $C / \mathbb{Q}: y^{2}=x^{6}-10 x^{4}+2 x^{3}+21 x^{2}-18 x+5, N=103^{2}$. Then

$$
W(\operatorname{Jac}(C / \mathbb{Q}))=(-1)^{2} \times \text { something at } 103
$$

Applications

ExAMPLE

Let $C / \mathbb{Q}: y^{2}=x^{6}-10 x^{4}+2 x^{3}+21 x^{2}-18 x+5, N=103^{2}$. Then

$$
W(\operatorname{Jac}(C / \mathbb{Q}))=(-1)^{2} \times \text { something at } 103
$$

LEMMA (Dokchitser-Dokchitser-MAistret-Morgan)

Let C / \mathbb{Q}_{p} be a hyperelliptic curve with $p>2$ genus $(C)+1$. Then the inertia representation $\rho_{\mathrm{Jac}(C)}^{*}$ attached to $H_{\text {ett }}^{1}\left(C / \overline{\mathbb{Q}_{p}}, \mathbb{Q}_{l}\right) \otimes_{\mathbb{Z}_{l}} \mathbb{C}$ is computable from a Weierstrass model.

Applications

ExAMPLE

Let $C / \mathbb{Q}: y^{2}=x^{6}-10 x^{4}+2 x^{3}+21 x^{2}-18 x+5, N=103^{2}$. Then

$$
W(\operatorname{Jac}(C / \mathbb{Q}))=(-1)^{2} \times \text { something at } 103
$$

LEMMA (DOKCHITSER-DOKCHITSER-MAISTRET-MORGAN)

Let C / \mathbb{Q}_{p} be a hyperelliptic curve with $p>2$ genus $(C)+1$. Then the inertia representation $\rho_{\mathrm{Jac}(C)}^{*}$ attached to $H_{\text {ett }}^{1}\left(C / \overline{\mathbb{Q}_{p}}, \mathbb{Q}_{l}\right) \otimes_{\mathbb{Z}_{l}} \mathbb{C}$ is computable from a Weierstrass model.

0001000

Applications

ExAMPLE

Let $C / \mathbb{Q}: y^{2}=x^{6}-10 x^{4}+2 x^{3}+21 x^{2}-18 x+5, N=103^{2}$.

Applications

ExAMPLE

Let $C / \mathbb{Q}: y^{2}=x^{6}-10 x^{4}+2 x^{3}+21 x^{2}-18 x+5, N=103^{2}$.

Then $\operatorname{Jac}\left(C / \mathbb{Q}_{103}\right)$ has potentially good reduction

Applications

ExAMPLE

Let $C / \mathbb{Q}: y^{2}=x^{6}-10 x^{4}+2 x^{3}+21 x^{2}-18 x+5, N=103^{2}$.

Then $\operatorname{Jac}\left(C / \mathbb{Q}_{103}\right)$ has potentially good reduction with $m_{1}=m_{6}=1$ and $m_{e}=0$ otherwise. Hence

$$
W(\operatorname{Jac}(C / \mathbb{Q}))=
$$

Applications

ExAMPLE

Let $C / \mathbb{Q}: y^{2}=x^{6}-10 x^{4}+2 x^{3}+21 x^{2}-18 x+5, N=103^{2}$.

Then $\operatorname{Jac}\left(C / \mathbb{Q}_{103}\right)$ has potentially good reduction with $m_{1}=m_{6}=1$ and $m_{e}=0$ otherwise. Hence

$$
W(\operatorname{Jac}(C / \mathbb{Q}))=(-1)^{2} \times
$$

Applications

ExAMPLE

Let $C / \mathbb{Q}: y^{2}=x^{6}-10 x^{4}+2 x^{3}+21 x^{2}-18 x+5, N=103^{2}$.

Then $\operatorname{Jac}\left(C / \mathbb{Q}_{103}\right)$ has potentially good reduction with $m_{1}=m_{6}=1$ and $m_{e}=0$ otherwise. Hence

$$
W(\operatorname{Jac}(C / \mathbb{Q}))=(-1)^{2} \times\left(\frac{-1}{103}\right)=-1 .
$$

Applications

ExAMPLE

Let $C / \mathbb{Q}: y^{2}=x^{6}-10 x^{4}+2 x^{3}+21 x^{2}-18 x+5, N=103^{2}$.

Then $\operatorname{Jac}\left(C / \mathbb{Q}_{103}\right)$ has potentially good reduction with $m_{1}=m_{6}=1$ and $m_{e}=0$ otherwise. Hence

$$
W(\operatorname{Jac}(C / \mathbb{Q}))=(-1)^{2} \times\left(\frac{-1}{103}\right)=-1
$$

REMARK

The Mordell-Weil rank of $\operatorname{Jac}(C / \mathbb{Q})$ (conjecturally) increases in every quadratic extension K / \mathbb{Q}.

Any Questions?

Thanks for listening!!

