ROOT NUMBERS OF ABELIAN VARIETIES

Matthew Bisatt

King's College London

ICTP Curves and L-functions, 5th September 2017

Let A/K be an abelian variety over a number field. Then there is a (conjectural) completed L-function $\Lambda(A/K,s)$

Let A/K be an abelian variety over a number field. Then there is a (conjectural) completed *L*-function $\Lambda(A/K,s)$ with functional equation

$$\Lambda(A/K,s) = \pm \Lambda(A/K,2-s).$$

The global root number $W(A/K) = \pm 1$ is the expected sign of the functional equation; it is defined independently of the existence of the *L*-function.

Let A/K be an abelian variety over a number field. Then there is a (conjectural) completed L-function $\Lambda(A/K,s)$ with functional equation

$$\Lambda(A/K,s) = \pm \Lambda(A/K,2-s).$$

The global root number $W(A/K) = \pm 1$ is the expected sign of the functional equation; it is defined independently of the existence of the *L*-function.

PARITY CONJECTURE

$$W(A/K) = (-1)^{\operatorname{rank}_{\mathbb{Z}} A(K)}.$$

Let A/K be an abelian variety over a number field. Then there is a (conjectural) completed *L*-function $\Lambda(A/K,s)$ with functional equation

$$\Lambda(A/K,s) = \pm \Lambda(A/K,2-s).$$

The global root number $W(A/K) = \pm 1$ is the expected sign of the functional equation; it is defined independently of the existence of the *L*-function.

PARITY CONJECTURE

$$W(A/K) = (-1)^{\operatorname{rank}_{\mathbb{Z}} A(K)}.$$

COROLLARY

If W(A/K) = -1, then |A(K)| is infinite.

How do we compute the global root number?

$$W(A/K) := \prod_{v \in M_K} W(A/K_v)$$

How do we compute the global root number?

$$W(A/K) := \prod_{v \in M_K} W(A/K_v)$$

LEMMA

• $W(A/K_v) = 1$ if A has good reduction at finite v;

How do we compute the global root number?

$$W(A/K) := \prod_{v \in M_K} W(A/K_v)$$

LEMMA

- $W(A/K_v) = 1$ if A has good reduction at finite v;
- $W(A/K_v) = (-1)^{\dim A}$ if $v | \infty$.

Let E/\mathbb{Q}_p be an elliptic curve with potentially multiplicative reduction $(j(E)\not\in\mathbb{Z}_p)$

Let E/\mathbb{Q}_p be an elliptic curve with potentially multiplicative reduction $(j(E) \notin \mathbb{Z}_p)$, then $\rho_E^* \cong \chi \otimes \operatorname{sp}(2)$

Let E/\mathbb{Q}_p be an elliptic curve with potentially multiplicative reduction $(j(E) \notin \mathbb{Z}_p)$, then $\rho_E^* \cong \chi \otimes \operatorname{sp}(2)$ and

$$W(E/\mathbb{Q}_p) = \begin{cases} -1 & \text{if } \chi = \mathbb{1} \text{ (split)}; \\ 1 & \text{if } \chi = \eta \text{ is unramified quadratic (nonsplit)}; \end{cases}$$

Let E/\mathbb{Q}_p be an elliptic curve with potentially multiplicative reduction $(j(E) \notin \mathbb{Z}_p)$, then $\rho_E^* \cong \chi \otimes \operatorname{sp}(2)$ and

$$W(E/\mathbb{Q}_p) = \begin{cases} -1 & \text{if } \chi = \mathbb{1} \text{ (split)}; \\ 1 & \text{if } \chi = \eta \text{ is unramified quadratic (nonsplit)}; \\ \left(\frac{-1}{p}\right) & \text{if } \chi \text{ is ramified and } p > 2. \end{cases}$$

Let E/\mathbb{Q}_p be an elliptic curve with potentially multiplicative reduction $(j(E) \notin \mathbb{Z}_p)$, then $\rho_E^* \cong \chi \otimes \operatorname{sp}(2)$ and

$$W(E/\mathbb{Q}_p) = \begin{cases} -1 & \text{if } \chi = \mathbb{1} \text{ (split)}; \\ 1 & \text{if } \chi = \eta \text{ is unramified quadratic (nonsplit)}; \\ \left(\frac{-1}{p}\right) & \text{if } \chi \text{ is ramified and } p > 2. \end{cases}$$

Let
$$E/\mathbb{Q}: y^2+y=x^3-x,$$
 $N=37,$ $j=\frac{110592}{37}.$ Then
$$W(E/\mathbb{Q})$$

Let E/\mathbb{Q}_p be an elliptic curve with potentially multiplicative reduction $(j(E) \notin \mathbb{Z}_p)$, then $\rho_E^* \cong \chi \otimes \operatorname{sp}(2)$ and

$$W(E/\mathbb{Q}_p) = \begin{cases} -1 & \text{if } \chi = \mathbb{1} \text{ (split)}; \\ 1 & \text{if } \chi = \eta \text{ is unramified quadratic (nonsplit)}; \\ \left(\frac{-1}{p}\right) & \text{if } \chi \text{ is ramified and } p > 2. \end{cases}$$

Let
$$E/\mathbb{Q}:y^2+y=x^3-x,$$
 $N=37,$ $j=\frac{110592}{37}.$ Then
$$W(E/\mathbb{Q})=-1\times$$

Let E/\mathbb{Q}_p be an elliptic curve with potentially multiplicative reduction $(j(E) \notin \mathbb{Z}_p)$, then $\rho_E^* \cong \chi \otimes \operatorname{sp}(2)$ and

$$W(E/\mathbb{Q}_p) = \begin{cases} -1 & \text{if } \chi = \mathbb{1} \text{ (split)}; \\ 1 & \text{if } \chi = \eta \text{ is unramified quadratic (nonsplit)}; \\ \left(\frac{-1}{p}\right) & \text{if } \chi \text{ is ramified and } p > 2. \end{cases}$$

Let
$$E/\mathbb{Q}: y^2 + y = x^3 - x$$
, $N = 37$, $j = \frac{110592}{37}$. Then

$$W(E/\mathbb{Q}) = -1 \times 1 = -1.$$

Let E/\mathbb{Q}_p be an elliptic curve with potentially multiplicative reduction $(j(E) \notin \mathbb{Z}_p)$, then $\rho_E^* \cong \chi \otimes \operatorname{sp}(2)$ and

$$W(E/\mathbb{Q}_p) = \begin{cases} -1 & \text{if } \chi = \mathbb{1} \text{ (split)}; \\ 1 & \text{if } \chi = \eta \text{ is unramified quadratic (nonsplit)}; \\ \left(\frac{-1}{p}\right) & \text{if } \chi \text{ is ramified and } p > 2. \end{cases}$$

EXAMPLE

Let
$$E/\mathbb{Q}: y^2 + y = x^3 - x$$
, $N = 37$, $j = \frac{110592}{37}$. Then

$$W(E/\mathbb{Q}) = -1 \times 1 = -1.$$

So $E(\mathbb{Q})$ is infinite, assuming the parity conjecture.

ABELIAN VARIETIES: POTENTIALLY TOTALLY TORIC

PROPOSITION

Let $\rho_A^* \cong \rho_T \otimes \operatorname{sp}(2)$ and assume that $p > 2 \dim A + 1$.

ABELIAN VARIETIES: POTENTIALLY TOTALLY TORIC

PROPOSITION

Let $\rho_A^* \cong \rho_T \otimes \operatorname{sp}(2)$ and assume that $p > 2 \dim A + 1$. Then

$$W(A/\mathbb{Q}_p) = (-1)^{\langle \rho_T, \mathbb{1} \rangle}$$

ABELIAN VARIETIES: POTENTIALLY TOTALLY TORIC

PROPOSITION

Let $\rho_A^* \cong \rho_T \otimes \operatorname{sp}(2)$ and assume that $p > 2 \dim A + 1$. Then

$$W(A/\mathbb{Q}_p) = (-1)^{\langle \rho_T, \mathbb{1} \rangle} \left(\frac{-1}{p}\right)^{m_T},$$

where m_T is the multiplicity of -1 as an eigenvalue for $\rho_T(\iota)$, with ι any generator of the tame inertia group.

Elliptic Curves: Potentially Good

PROPOSITION

Let E/\mathbb{Q}_p , p > 3, have potentially good reduction $(j(E) \in \mathbb{Z}_p)$.

Elliptic Curves: Potentially Good

PROPOSITION

Let E/\mathbb{Q}_p , p > 3, have potentially good reduction $(j(E) \in \mathbb{Z}_p)$. Set $e = \frac{12}{\gcd(v_p(\Delta_E), 12)}$.

PROPOSITION

Let
$$E/\mathbb{Q}_p$$
, $p > 3$, have potentially good reduction $(j(E) \in \mathbb{Z}_p)$. Set
 $e = \frac{12}{\gcd(v_p(\Delta_E), 12)}$. Then

$$W(E/\mathbb{Q}_p) = \begin{cases} 1 & \text{if } e = 1 \text{ (good reduction)}; \\ \left(\frac{-1}{p}\right) & \text{if } e = 2, 6; \\ \left(\frac{-3}{p}\right) & \text{if } e = 3; \\ \left(\frac{-2}{p}\right) & \text{if } e = 4. \end{cases}$$

Abelian Varieties: Potentially Good

For each $e \in \mathbb{N}$, let $\varphi_B(e) = \max\{2, |(\mathbb{Z}/e\mathbb{Z})^{\times}|\}$

Abelian Varieties: Potentially Good

For each $e \in \mathbb{N}$, let $\varphi_B(e) = \max\{2, |(\mathbb{Z}/e\mathbb{Z})^{\times}|\}$ and set $m_e = \frac{\#\{\text{eigenvalues of } \rho_A^*(\iota) \text{ of order } e\}}{\varphi_B(e)}.$

Abelian Varieties: Potentially Good

For each
$$e \in \mathbb{N}$$
, let $\varphi_B(e) = \max\{2, |(\mathbb{Z}/e\mathbb{Z})^{\times}|\}$ and set
$$m_e = \frac{\#\{\text{eigenvalues of } \rho_A^*(\iota) \text{ of order } e\}}{\varphi_B(e)}.$$

PROPOSITION

Let $p > 2 \dim A + 1$. Then $W(A/\mathbb{Q}_p) = \prod_{e \in \mathbb{N}} W_{p,e}^{m_e}$, where

ABELIAN VARIETIES: POTENTIALLY GOOD

For each
$$e \in \mathbb{N}$$
, let $\varphi_B(e) = \max\{2, |(\mathbb{Z}/e\mathbb{Z})^{\times}|\}$ and set
$$m_e = \frac{\#\{\text{eigenvalues of } \rho_A^*(\iota) \text{ of order } e\}}{\varphi_B(e)}.$$

PROPOSITION

Let $p > 2 \dim A + 1$. Then $W(A/\mathbb{Q}_p) = \prod_{e \in \mathbb{N}} W_{p,e}^{m_e}$, where

$$W_{p,e} = \begin{cases} \binom{p}{l} & \text{if } e = l^k; \\ \binom{-1}{p} & \text{if } e = 2l^k \text{ and } l \equiv 3 \mod 4, e = 2; \\ \binom{-2}{p} & \text{if } e = 4; \\ \binom{2}{p} & \text{if } e = 2^k \text{ for } k \ge 3; \\ 1 & \text{else,} \end{cases}$$

where k > 0 and l is any odd prime.

Matthew Bisatt (KCL)

Trieste 2017 7 / 11

ABELIAN VARIETIES: THE GENERAL CASE

Abelian Varieties: The General Case

Let \mathcal{K} be a characteristic 0 local field with residue characteristic p. In general $\rho_A^* \cong \rho_B^* \oplus (\rho_T \otimes \operatorname{sp}(2))$, for some abelian variety B/\mathcal{K} with potentially good reduction.

Abelian Varieties: The General Case

Let \mathcal{K} be a characteristic 0 local field with residue characteristic p. In general $\rho_A^* \cong \rho_B^* \oplus (\rho_T \otimes \operatorname{sp}(2))$, for some abelian variety B/\mathcal{K} with potentially good reduction.

THEOREM (B.)

Let $p > 2 \dim A + 1$. Using the notation above:

$$W(A/\mathcal{K}) = (-1)^{\langle \rho_T, 1 \rangle} W_{p,2}^{m_T f(\mathcal{K}/\mathbb{Q}_p)} \left(\prod_{e \in \mathbb{N}} W_{p,e}^{m_e}\right)^{f(\mathcal{K}/\mathbb{Q}_p)}$$

Let
$$C/\mathbb{Q}: y^2 = x^6 - 10x^4 + 2x^3 + 21x^2 - 18x + 5$$
, $N = 103^2$.

Let
$$C/\mathbb{Q}: y^2 = x^6 - 10x^4 + 2x^3 + 21x^2 - 18x + 5$$
, $N = 103^2$. Then
 $W(\operatorname{Jac}(C/\mathbb{Q})) = (-1)^2 \times$

Let
$$C/\mathbb{Q}: y^2 = x^6 - 10x^4 + 2x^3 + 21x^2 - 18x + 5$$
, $N = 103^2$. Then

 $W(\operatorname{Jac}(C/\mathbb{Q})) = (-1)^2 \times \text{ something at 103.}$

Let
$$C/\mathbb{Q}: y^2 = x^6 - 10x^4 + 2x^3 + 21x^2 - 18x + 5$$
, $N = 103^2$. Then

$$W(\operatorname{Jac}(C/\mathbb{Q})) = (-1)^2 \times \text{ something at 103.}$$

Lemma (Dokchitser-Dokchitser-Maistret-Morgan)

Let C/\mathbb{Q}_p be a hyperelliptic curve with p > 2 genus(C) + 1. Then the inertia representation $\rho^*_{\operatorname{Jac}(C)}$ attached to $H^1_{\acute{e}t}(C/\overline{\mathbb{Q}}_p, \mathbb{Q}_l) \otimes_{\mathbb{Z}_l} \mathbb{C}$ is computable from a Weierstrass model.

Let
$$C/\mathbb{Q}: y^2 = x^6 - 10x^4 + 2x^3 + 21x^2 - 18x + 5$$
, $N = 103^2$. Then

$$W(\operatorname{Jac}(C/\mathbb{Q})) = (-1)^2 \times \text{ something at 103.}$$

Lemma (Dokchitser–Dokchitser–Maistret–Morgan)

Let C/\mathbb{Q}_p be a hyperelliptic curve with p > 2 genus(C) + 1. Then the inertia representation $\rho^*_{\operatorname{Jac}(C)}$ attached to $H^1_{\acute{e}t}(C/\overline{\mathbb{Q}}_p, \mathbb{Q}_l) \otimes_{\mathbb{Z}_l} \mathbb{C}$ is computable from a Weierstrass model.

Let
$$C/\mathbb{Q}: y^2 = x^6 - 10x^4 + 2x^3 + 21x^2 - 18x + 5$$
, $N = 103^2$.

Let
$$C/\mathbb{Q}: y^2 = x^6 - 10x^4 + 2x^3 + 21x^2 - 18x + 5$$
, $N = 103^2$.

Then $\operatorname{Jac}(C/\mathbb{Q}_{103})$ has potentially good reduction

Let
$$C/\mathbb{Q}: y^2 = x^6 - 10x^4 + 2x^3 + 21x^2 - 18x + 5$$
, $N = 103^2$.

Then ${\rm Jac}(C/\mathbb{Q}_{103})$ has potentially good reduction with $m_1=m_6=1$ and $m_e=0$ otherwise. Hence

 $W(\operatorname{Jac}(C/\mathbb{Q})) =$

Let
$$C/\mathbb{Q}: y^2 = x^6 - 10x^4 + 2x^3 + 21x^2 - 18x + 5$$
, $N = 103^2$.

Then $\text{Jac}(C/\mathbb{Q}_{103})$ has potentially good reduction with $m_1 = m_6 = 1$ and $m_e = 0$ otherwise. Hence

$$W(\operatorname{Jac}(C/\mathbb{Q})) = (-1)^2 \times$$

Let
$$C/\mathbb{Q}: y^2 = x^6 - 10x^4 + 2x^3 + 21x^2 - 18x + 5$$
, $N = 103^2$.

Then $\text{Jac}(C/\mathbb{Q}_{103})$ has potentially good reduction with $m_1 = m_6 = 1$ and $m_e = 0$ otherwise. Hence

$$W(\operatorname{Jac}(C/\mathbb{Q})) = (-1)^2 \times \left(\frac{-1}{103}\right) = -1.$$

Let
$$C/\mathbb{Q}: y^2 = x^6 - 10x^4 + 2x^3 + 21x^2 - 18x + 5$$
, $N = 103^2$.

Then $Jac(C/\mathbb{Q}_{103})$ has potentially good reduction with $m_1 = m_6 = 1$ and $m_e = 0$ otherwise. Hence

$$W(\operatorname{Jac}(C/\mathbb{Q})) = (-1)^2 \times \left(\frac{-1}{103}\right) = -1.$$

Remark

The Mordell-Weil rank of $\text{Jac}(C/\mathbb{Q})$ (conjecturally) increases in every quadratic extension K/\mathbb{Q} .

ANY QUESTIONS?

Matthew Bisatt (KCL)